zum Hauptinhalt wechseln zum Hauptmenü wechseln zum Fußbereich wechseln Universität Bielefeld Play Search
  • Plant Biotechnology

    © Universität Bielefeld

Research

Calcium signalling during hypoxia


Calcium is an important second messenger in diverse processes within the cell. This also applies to hypoxic stress, which is accompanied by a rapid influx of calcium ions. In our group, we investigate how calcium-dependent proteins participate during hypoxia signalling, e.g. by regulating crucial transcription factors.


 

Mitochondrial retrograde signalling under hypoxia


The first cell compartment affected by hypoxia is the mitochondrion since oxygen serves as the final electron acceptor in the mitochondrial electron transport chain. Thus, oxygen deficiency leads to a rapid drop in the cellular ATP level and a subsequent energy crisis. To allow metabolic adjustment to hypoxia, communication between mitochondrion and nucleus, the so-called mitochondrial retrograde signalling is required. We are investigating early-acting transcription factors under hypoxia which are activated by a mitochondrial signal.


 

Integration of hypoxia signalling pathways


Hypoxia is a huge threat to the plant’s survival due to inducing a severe energy crisis. Therefore, plants need to sense hypoxia rapidly through initiating transcriptional reprogramming regulated by the ERFVII family. We are investigating repressors of ERFVII factors which are redox-controlled and which act as entry point for multiple signals produced under hypoxia.


 

Prolyl hydroxylation in hypoxia response


Prolyl hydroxylases (PHDs) are involved in hypoxia sensing in human by catalysing an oxygen-dependent key-step in the degradation of transcription factors responsible for adaptation to hypoxia. While this process is well understood in human, the function of plant PHD homologues (P4Hs) is yet to be characterized. Plants activate hypoxia responses through transcription factors of the ERFVII family. We are currently investigating the link between hypoxia, P4Hs and ERFVII factors in planta.


 

Priming


Plants are exposed to various biotic and abiotic stresses during their lifetime. The ability to memorize past stress events has crystallized as one important aspect to allow sufficient stress responses in order to survive critical situations. Through priming by a first stress, a plant can be capable to respond faster and stronger to a recurring stress, thus, exhibiting a higher tolerance. We would like to understand the mechanisms of priming and stress memory in the context of flooding stress in the important crop plant Hordeum vulgare (barley).


 


[Hier Anpassungen einfügen]

"Start-Paket"

-> Überschriften: Umbruch in diversen Überschriften verhindern. -> Ohne ANpassung: Überschriften werden, wie normaler Text, umgebrochen.
-> Seitliche Navigation: Die Section Content "[Hier Anpassungen einfügen]" wird normalerweise in der Navigation angezeigt. Diese Anpassung entfernt den Link. -> Ohne Anpassung: Anpassung-Section wird in der Navigation angezeigt.
-> Rahmenfarbe von Tab-Gruppen in Fakultätsgrün umstellen. -> Ohne Anpassung: Farben sind manchmal Uni-Grün.
-> Alle <section>-Elemente auf 100% Breite setzen und anzeigen.
-> Alle Links schwarz
-> Textboxen innerhalb von Groups auf 100% Breite [Portal-Page] -> Groups auf 100% Breite [Portal-Page]


Zum Seitenanfang